联合学习允许一组分布式客户端培训私有数据的公共机器学习模型。模型更新的交换由中央实体或以分散的方式管理,例如,由一个区间的。但是,所有客户端的强大概括都使得这些方法不合适,不合适地分布(非IID)数据。我们提出了一个统一的统一方法,在联合学习中的权力下放和个性化,该方法是基于模型更新的定向非循环图(DAG)。客户端代替培训单个全局模型,客户端专门从事来自其他客户端的模型更新的本地数据,而不是依赖于各自数据的相似性。这种专业化从基于DAG的沟通和模型更新的选择隐含地出现。因此,我们启用专业模型的演变,它专注于数据的子集,因此覆盖非IID数据,而不是在基于区块的基于区块的设置中的联合学习。据我们所知,拟议的解决方案是第一个在完全分散的联邦学习中团结的个性化和中毒鲁棒性。我们的评价表明,模型的专业化直接从基于DAG的模型更新通信到三个不同的数据集。此外,与联合平均相比,我们在客户端展示稳定的模型精度和更少的方差。
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting.
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译
When reading news articles on social networking services and news sites, readers can view comments marked by other people on these articles. By reading these comments, a reader can understand the public opinion about the news, and it is often helpful to grasp the overall picture of the news. However, these comments often contain offensive language that readers do not prefer to read. This study aims to predict such offensive comments to improve the quality of the experience of the reader while reading comments. By considering the diversity of the readers' values, the proposed method predicts offensive news comments for each reader based on the feedback from a small number of news comments that the reader rated as "offensive" in the past. In addition, we used a machine learning model that considers the characteristics of the commenters to make predictions, independent of the words and topics in news comments. The experimental results of the proposed method show that prediction can be personalized even when the amount of readers' feedback data used in the prediction is limited. In particular, the proposed method, which considers the commenters' characteristics, has a low probability of false detection of offensive comments.
translated by 谷歌翻译
Self-Supervised Learning (SSL) is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars. In addition to a lack of labeled data, these applications also suffer from distributional shifts. Therefore, an SSL method should provide robust generalization and uncertainty estimation in the test dataset to be considered a reliable model in such high-stakes domains. However, existing approaches often focus on generalization, without evaluating the model's uncertainty. The ability to compare SSL techniques for improving these estimates is therefore critical for research on the reliability of self-supervision models. In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks. We train SSL in auxiliary learning for vision and pre-training for language model, then evaluate the generalization (in-out classification accuracy) and uncertainty (expected calibration error) across different distribution covariate shift datasets, including MNIST-C, CIFAR-10-C, CIFAR-10.1, and MNLI. Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning. All source code to reproduce results is available at https://github.com/hamanhbui/reliable_ssl_baselines.
translated by 谷歌翻译
Large language models having hundreds of millions, and even billions, of parameters have performed extremely well on a variety of natural language processing (NLP) tasks. Their widespread use and adoption, however, is hindered by the lack of availability and portability of sufficiently large computational resources. This paper proposes a knowledge distillation (KD) technique building on the work of LightMBERT, a student model of multilingual BERT (mBERT). By repeatedly distilling mBERT through increasingly compressed toplayer distilled teacher assistant networks, CAMeMBERT aims to improve upon the time and space complexities of mBERT while keeping loss of accuracy beneath an acceptable threshold. At present, CAMeMBERT has an average accuracy of around 60.1%, which is subject to change after future improvements to the hyperparameters used in fine-tuning.
translated by 谷歌翻译